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Abstract

We consider the steady-state equations for a compressible fluid. For low-speed flow, the

system is stiff because the ratio of the convective speed to the speed of sound is quite small.
To overcome this difficulty, we alter the time evolution of the equations but retain the same

steady-state analytic equations. To achieve high numerical resolution, we also alter the artifi-

cial viscosity of the numerical scheme, which is implemented conveniently by using other sets
of variables in addition to the conservative variables. We investigate the effect of the artifi-

cial dissipation within this preconditioned system. We consider both the nonconservative and
conservative formulations for artificial viscosity and examine their effect on the accuracy and

convergence of the numerical solutions. The numerical results for viscous three-dimensional wing
flows and two-dimensional multi-element airfoil flows indicate that efficient multigrid computa-

tions of flows with arbitrarily low Mach numbers are now possible with only minor modifications

to existing compressible Navier-Stokes codes. The conservative formulation for artificial viscos-

ity, coupled with the preconditioning, offers a viable computational fluid dynamics (CFD) tool

for analyzing problems that contain both incompressible and compressible flow regimes.

"This research was supported in part by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-19480 while the first author was in residence at the Institute for Computer Apphcations in Science and

Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.





1 Introduction

In the past few years, several preconditioning methods have appeared in the literature [1-4] with the

aim of solving nearly incompressible flow problems with numerical algorithms that were designed

for compressible flows. The development of these methods are motivated by two main observations.

First, flow problems exist that contain both compressible and incompressible flows simultaneously;

that is, part of the flow region can be considered to be incompressible with locally low Mach

numbers, whereas significant compressibility effects occur in other regions of the flow. A typical

example in aerodynamics is the flow over a multielement airfoil near maximum lift. Surface heat

transfer or volumetric heat addition can also introduce compressibility effects in low-speed flows.

Second, it is preferable to use existing compressible flow codes o_¢er the broadest range of flow

conditions possible for ease of use and consistency reasons.

The difficulty in solving the compressible equations for low Mach numbers is attributed to the

large disparity of the acoustic wave speed, u + a, and the waves convected at the fluid speed, u. The

application of preconditioning changes the eigenvalues of the system of compressible flow equations
and reduces this disparity in the wave speeds. For example, the time derivatives are premultiplied

by a matrix that slows the speed of the acoustic waves relative to the fluid speed.

The preconditionings that are applied here not only accelerate the convergence to a steady

state but can also change the steady-state solution because of the choice of artificial viscosity, or

upwinding, terms. Similarly, the boundary conditions are based on the preconditioned equations

rather than the original governing equations. As discussed in ref. [9], the "standard" numerical

schemes for the compressible equations do not converge to the solution of the incompressible equa-

tions (using a pseudo-compressibility approach) as the Mach number approaches zero. However,
the use of a proper preconditioning leads to a numerical scheme that does behave appropriately for

low Mach numbers.

In this paper, we present a generalization of the preconditioners given by Turkel [10]- [11], and

Choi and Merkle [1], as well as those presented more recently by Radespiel and Turkel [6] and

Radespiel et al. [7]. We discuss both nonconservative and conservative artificial dissipation models

and the effects of the preconditioning matrix on the accuracy. Numerical results indicate that by

using the conservative formulation of artificial dissipation model, accurate solutions are obtained

without sacrificing efficiency.

We show that preconditioning can be combined with well-known convergence acceleration tech-

niques such as residual smoothing and multigrid. Indeed, the clustering of eigenvalues with pre-

conditioning improves the damping of transient high-frequency modes to an extent, which makes

efficient multigrid computation of low Mach number flows practical.

Algorithm

The conservation-law form of the Euler equations can be transformed easily into non-conservation

form by matrix transformations and vice-versa. For convenience, we start with the non-conservation

form of the Euler equations. Note that although the theory is developed for the Euler equations, the

methodology is applied in a straight-forward manner to the Navier-Stokes equations by grouping

the viscous fluxes with the dissipative fluxes.

We consider the preconditioned Euler equations written as

P-1Qt + AQ_ + BQ_ + CQ_ = 0 (1)



Theform of the matricesA, B, and C depends on the choice of variables Q. We first consider

the variables Q = Q0 = (p, u, v, w, S), where the entropy satisfies the relation dS = dp - a2dp. We

then have the following form of the matrices for Q0:

A 0 _-

u pa 2 0 0
1
-_ u 0 0
0 0 u 0

0 0 0 u

0 0 0 0

0

0

0 ,Bo =

0

u

v 0 pa 2 0 0

0 v 0 0 0

1 0 v 0 0
p
0 0 0 v 0

0 0 0 0 v

,Co =

w 0 0 pa 2 0 I

0 w 0 0 0

0 0 w 0 0
1

0 0 w 0
0 0 0 0 w

In generalized coordinates, we are interested in combinations of these matrices. Hence, we

define Do = Aowl + Bow2 + Cow3 and q = uwl + vw2 + ww3, where wl, w2, and w3 are the metrics
associated with the coordinate transformation. This definition leads to

We consider

D O ---

I q pa2wl pa2_2 pa2_3 0 I

1 q 0 0 0
iWl 0 q 0 0

_w2 0 0 q 0
_w3

o o o o q

the preconditioner P0 given by

/a2 /
_- 000 ,_
au 1 000

p_ l ov= p---_- 0100 ,
Otw

p-_- 0 0 1 0
0 0 0 0 1

PO

000 -
a_ 1 0 0 a_'6

• OtV Ot*d0 1 0 _5

o o
0 000 1

(2)

where a, _5, and _ are free parameters.

For optimal preconditioning, 32 should be proportional to the square of the local speed, u 2 +

v 2 + w 2, ([11]). However, this strategy introduces a complication near the stagnation points; the

preconditioner becomes singular when _ = 0. Furthermore, Darmofal and Schmid [3] have shown

that the eigenvectors become less orthogonal as _ goes to zero. We introduce a simple cutoff to avoid

this situation. Because this preconditioner is introduced mainly for tow-speed regions, we design

the preconditioner to turn off at higher speeds. If the preconditioner is turned off at a subsonic
Mach number we can use a nonconservative formulation for the artificial viscosity without a loss of

accuracy in capturing weak solutions. As shown later, this strategy simplifies the construction of

an artificial viscosity. For sufficiently high Mach numbers, we want to remove the preconditioning,

i.e. f12 = a 2, a = 0, and 6 = 0. One choice is

_2 = rain max Kl(U 2 + v2 + w2)(1 + ----_04 M ),/_2(u_ + v_ + , (3)

For nonorthogona.l grids, u 2 + v2 + w2 can be replaced by the sum of the squares of the normalized

contravariant velocity components.

The case of no preconditioning (P = I) correspofids to a = 0,_ 2 = a 2, and _ = 0. The

parameter _2 is returned to its nonpreconditioned value at M0, which is the cutoff value for the



Mach number. Numerical evidence suggests that K2 depends on the number of mesh nodes near

the stagnation point and possibly should depend on the local cell Reynolds number [1]. Typically,

K1 is between 1 and 1.1, and K2 is between 0.4 and 1. The eigenvalues of the matrix PoDo are

and

A0 = q, q, q (repeated eigenvalues)

( JA+ = zq:k z2q 2+/32([w[ 2--) , z=0.5(1-a+_-). (4)

So A = diag(A+, A_, A0, Ao, A0).

The eigenvalues of PoDo are independent of (5; however, the same is not true for the eigenvectors.

Though Choi and Merkle [1] employ/_ = 1, we consider (5 = 0 because this simplifies the eigenvectors

of PoDo. The right eigenvectors are given by the columns of

p$2 pZ2 0 0 0 /

32_1-c_uA+ _2_l-auA-
A+-q x_-g w2 0 0

B2W2 -- O_V A..{. B2u)2 -o_UA-

A+-q A_ -q _z1 v33 0

32wz-awA+ B2_3-c_wA_ 0 --w2 0
A+ -q A_-q

0 0 0 0 1

R-I_

Note that (A+ - q)(A_ - q) = aq 2 -/32IoJ] 2. We define some tempor_y quantities. Let

_(ul_l _ - q_l)
r31 =

p_2(A+ - q)(A_ - q)

--i 0Y1(_2031 -- (_uq)

r32 -- _2 _2(_+ - q)(_- - q)

--(_20J 1 -- o_uq)

/'33 ----

(A+ --q)(A_ --q)

-_3(_2_i- _uq)
r34 ----

w2(A+ - q)(A- - q)

-(_i_l 2 - q_3)
?'41 =

pw2(A+ - q)($_ - q)

r42 :

_:2(A+ - q)(A_ - q)

-&_3 - awq)
?'43 _--

(A+ - q)(A_ - q)

-1 _3($2_3 - awq)

w2 _:2(A+ - q)(A_ - q)
r44

Then

R

X+-(1-_)q wl w_ w3 0 /

_ _-_)q--(- -_ -_ -_ 0
-- p_2(A+-A_) A+-A_ A+-A_ A+-A_

r3l r32 r33 r34 0

r41 r42 r43 r44 0

0 0 0 0 1

(5)
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Note that R is singular for w_ = 0, which is merely an artifact because multiple eigenvalues exist

in a multidimensional eigenspace. If w2 = 0, then we can change the eigenvectors in the invariant

subspace of the multiple eigenvalues so that either wl or w3 appears in the denominator. Because

all three of these eigenvalues cannot be zero simultaneously, some set of nonsingular eigenvectors

always exists. Also note that _2 does not appear in the denominator in the final analysis and does

not create any numerical difficulties; therefore we can ignore this anomaly.

The largest eigenvalue of PoDo is used to determine the (inviscid) time step. For M _ 0,

A+-_0..Sq ((1 - e)+ x/(1 - a) 2 + 4). For a = 0, the condition number of PoDo is 1+_1__/__ 2.6, and
for a = 1 the condition number is 1.

The above matrices were given for Q0 = (P, u, v, w, S) variables. In the code we base everything

on Q4 = (P, u, v, w, T) variables. Then,

cqQ4 poCqQo
P4 = aQ4

The transformations between the Q0 and Q4 variables are given in the appendix.

Artificial Viscosity

For a central-difference scheme, it is necessary to add artificial dissipative terms to the finite-

difference approximation of the spatial derivatives to damp the numerical oscillations. A nonlinear

second-difference term is normally added to control oscillations near shocks, and a linear fourth-

difference term is added to damp high-frequency oscillations [5]. We are interested primarily in

the functional form of these differences. Hence, our examples include a second-difference artificial

dissipation; extensions to fourth differences and nonlinearities are straight-forward. Similarly, for
one-sided schemes the central difference plus the artificial dissipation is replaced by a Roe matrix

formulation.

A typical preconditioned finite-difference scheme can be expressed as

A Q ¢ = A t Pc -_x + -_y + -_z = A t Pc Ac + B c ----Z_ + C¢ (6)

where Qc represents the conservative variables and the spatial partial derivatives are replaced by

central-difference approximations. We consider both conservative and non-conservative ways of

adding artificial dissipative terms. The dissipation need not be expressed in terms of the conserva-

tive variables Qc. For another set of variables Qv, we get AQc = _AQv. We choose our "basic"

form as the one given in Q0 = (p, u, v, w, S) variables (i.e., P0). Then, for another set of variables
= a__q_v_p,= =qv, wehavethepreconditionerr,, oQc

We add second-difference terms for the artificial viscosity to Eq. (6) and omit the fourth

differences for brevity. We now get

(
+ \la(PyAv) _)_:

where Fv = Pv aa--_QV_ • Thus, Fv contains both the preconditioner and the change of variables. The
above formulation is non-conservative because Fv is outside the derivative terms. In the above
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equation,a is a matrix function. For example, if a is proportional.to the spectral radius, then we
have a scalar artificial viscosity in Qv variables; whereas if a(A) _ A, then we have a matrix-valued

artificial viscosity.
After we have computed AQv, we perform the residual smoothing on it. In the multigrid

algorithm, AQv is passed to the next coarser grid. At the end of each stage, Qv is recomputed.
The conservative variables are then calculated as nonlinear functions of the Qv variables. We

_Q_ 0__Q__.similar expressions can be written for the other coordinateshould mention that Av = Ac aQv,

directions. Let Av = a____ff_Fbe the Jacobian matrix; then, .4v = _Q--_vAv• Hence,
8Qv

OQV p A OQc OQc
PvAv- _-_c _O---Qv- rv&o-_v

Because the spectral radius is invariant under a similarity transformation for a scalar viscosity,

we can use either PvAv or PcAc. Let A = diag(A1,A2,A3, A3, A3), where A1,A2, and A3 represent

A+, A_, and Ao (i.e., the eigenvalues of PD), modified by cutoffs near the stagnation points. Define

}AI -- diag(lAa I, IA:l, tA31, IA3[, [A3[). Then, IPDI = R -1 lAIR. For any vector x = (Xl, z2,273, X4, XS) t,

IPDIx = (R -11AI)z, where z = Rx. Define Y = wlx2 + w2x3 + W3X4. Then,

Z _

1 [_¢-(1--)q z.

_+-_- l ,_ _ + Y]

--Z 1 + p-_

Z3

Z4

(1-7)x, + _xs

where z 1 is the first element of the vector z. We note that z3 and z4 do not appear by themselves

in subsequent formulas but rather in conjunction with other variables in the form

[ ; ]1 _(u[w[ - qwl)

w2z3 = -x2+ (A+-q)(A_-q) xl-(_2wl-auq)Y

1 [a(wlw'; - qW3)x1--(/32w 3 - awq)Y]_2Z4 = --X4 + (A+ - q)(A_ - q)

1 [a(v[w,;.-qcv2 )xl_(/32a:2_avq)Y]a)l Z3 -I.- W3Z4 -- x3-(A+_q)(A__q)

So

IPDIx = R -1 IAIz=

p_2(lAllzl ÷ IA21z2)
_2_l-czuA+ _ _2wl-c_uA-

A+--q I "allZ1 + _ '"21z2- (a_2z3)lA3l
_2_.' 2 -- Ot U_,+ ,/_2W 2 --OfVA--

Iat Izx+ -____q Ia21z2+ (,oaz3+ _3z4)lA31

X+-q I,allZl -I- A_-q IA21z2-- [_2 4)1 31

[(_ - _)l_llz_ + 1_31zd
"rp

For a scalar viscosity (i.e., when a is the spectral radius), the viscosity remains scalar after

preconditioning. In this approach, differences of the Q u variables, rather than those of the conserved

variables, are added to each of the conservation equations.



However, the formulation used until now is nonconservative. Since we are also interested in

solving transonic flows with shocks using this scheme, we present a conservative formulation of the

artificial dissipation. By dropping the subscript V, we obtain

Even if a is a scalar function, we must evaluate a matrix-vector product; as a result, the numerical

effort is equivalent in complexity to a matrix-valued viscosity.

Following previous work on multigrid schemes for the Navier-Stokes equations, these artificial

viscosity functions account for the ratio of the spectral radii in the different coordinate directions;

that is,

a(pA)=k(4)5.(PA) [l + \P-_fi-_]_P(PB)'_' + \p(PA)/_P(PC)']

where (_ denotes the original viscosity function, p denotes the spectral radius, and k (4) is the

artificial viscosity coefficient that corresponds to the fourth-difference terms. Similar relations are

used to modify the artificial viscosity by cell aspect-ratio in the other coordinate directions. These

scaling functions provide sufficient artificial dissipation for general curvilinear grids that contain

high aspect-ratio cells.

In the previous section, a preconditioner was introduced that is dependent on the parameters

a and _f. Because _f does not affect the eigenvalues of PA, it has no affect on the scalar artificial

viscosity. Choosing a = 1 reduces the largest eigenvalue, which also improves the condition number

and decreases the artificial viscosity compared with a = 0 case. We thus expect a = 1 to slow the

convergence compared with the case in which a = 0, in spite of the fact that we have reduced the

condition number. However, we expect that with a = 1, the numerical accuracy will improve. For

a matrix viscosity (or a Roe matrix), we expect similar but less pronounced dependence on a.

Boundary Conditions

In many CFD codes, the boundary conditions in the far field are based on characteristic variables.

even for viscous flow. Thus, at inflow the incoming variables that correspond to positive eigenvalues

are specified, and the outgoing variables that correspond to negative eigenvalues are extrapolated.

A change in the time-dependent equations also changes .the characteristics of the system (although

the signs of the eigenvalues remain unchanged). Hence, the boundary conditions must be modified

for the preconditioned system.

In the present study, we have used the simplified far-field boundary conditions suggested in ref.

[6]. Basically, all variables at far-field boundaries are specified in terms of two sets for p, u, v, w,

and T. Depending on whether the subsonic flow is an inflow or an outflow, one set is specified
at the free-stream levels, and the other set is extrapolated from the interior. For example, at the

inflow

ub = u_o,vb = v_,wb = w_, Tb = Zc_,Pb = Pint

and at the outflow

U b = Uint, V b = Vint,Wb = Wint, Tb = Tint,Pb = P_
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wherethesubscripts"b" and"inf' referto thevaluesat theboundaryandadjacentinterior points,
respectively.

For supersonicflows,standardboundaryconditionsareused;that is, extrapolationat the
outflowboundaryandfree-streamvaluesfor all variablesat the inflowboundaryareprescribed.

Changes to Original Coding

Here. we present the steps necessary to introduce preconditioning into an existing compressible flow

code. We assume an explicit time-stepping scheme (e.g., a Runge-Kutta scheme) that is augmented

by an implicit residual smoothing and multigrid scheme to obtain steady-state solutions.

1. Precondition the residual.

• Select a reasonable set of dependent variables for the problem (e.g., p, u, v, w, T). Note

that other sets of variables are possible.

• For nonconservative scalar artificial viscosity

- Multiply the physical residual (inviscid and Navier-Stokes portions and physical

forcing functions (if applicable)) by F = PT°O-_Q*I.

- Add scalar artificial viscosity in these new variables to the residual.

• For conservative scalar viscosity

- Add inviscid, viscous, and artificial viscosity fluxes to obtain the total residual.

Scalar viscosity already includes the transformation F -1.

- Multiply this total residual by F.

• Multiply the total preconditioned residual in the (p, u, v, w, T) by At. Apply the residual

smoothing for the changes in terms of the (p, u, v, w, T) variables. Add the residuals in

the (p. u, v, w,T) variables to the dependent variables at the previous time iteration
to obtain the values of (p, u,v,w,T) at the next time step. The new values of the
conservative variables are then evaluated as nonlinear functions of (p, u, v, w, T).

2. For the FAS multigrid algorithm, we need to restrict the residuals and the variables from a

finer grid to a. coarser grid. In the computer code, the residuals are stored in the (p, u, v, w, T)

frame, whereas the dependent variables are stored as conservative variables. Hence, restric-

tions and prolongations are done on the conservative variables. The residual smoothing is

performed on the (p, u, v, w, T) residuals and the forcing functions on the coarse grids are

evaluated in (p, u, v, w, T) variables.

3. Choose a new time step for the inviscid portion based on the preconditioned system. The

viscous contribution to the time step is then incorporated as usual.

4. Modify the far-field boundary conditions.

Computational Results

An existing three-dimensional compressible Navier-Stokes flow solver was modified to include the

preconditioning methodology described in the preceding paragraphs. The modified code was used
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CD

Mach no. panel method no preconditioning preconditioning

0.1 .241 .2448 .2434

0.01 .2172 .2421

0.001 .1097 .2421

0.1 0.0 .0008 .00027

0.01 .0086 .00027

0.001 .0731 .00027

Table 1: Comparison of lift and drag with/without preconditioning

to compute low-speed and transonic flow over several configurations of practical interest. Three of

these test cases are discussed here. The computational results reported in this paper were obtained

with scalar form of artificial dissipation.

Two Dimensional Results

We first consider a two dimensional inviscid subsonic problem. For this case we can compare the

compressible code with and without preconditioning to a panel method in order to assess their

accuracy. We consider inviscid flow over NACA 0012 airfoil. The C-type grid has 224 × 40 cells

clustered near the leading and trailing edges in order to allow accurate drag computations. As seen

in table 1 the code using the preconditioning gives lift and drag quite close to the panel method

results with only a small dependence on the Mach number. The non-preconditioned code has large

variations as the Mach number goes to zero and is not converging to the panel code results. In

particular the drag, which should be zero for inviscid flow, is very large without preconditioning

but close to zero when using preconditioning.

Low-Speed Flow over Three-Dimensional Wing

Essentially incompressible viscous flow over the ONERA M6 wing is considered as the first test

case. For this case, the Reynolds number (based on mean aerodynamic chord) is 11.7 million,

and the angle of attack is 3.06 °. A grid that consists of 193 × 49 × 33 points is used for these

computations.
The first set of results in Fig. 1 shows the effect of preconditioning on the convergence history

of the numerical algorithm at a Mach number of 0.1. For these computations, 50 iterations on the

coarse grid are followed by 300 iterations on the fine grid. This figure clearly shows a significant

improvement in the convergence rate when preconditioning is used.
The effect of the free-stream Mach number is considered in the next series. Figures 2 - 3

show the effect of free-stream Mach number on convergence rates and surface pressure distribution,

respectively. The residuals in Fig. 2 have been normalized with their respective initial values to

remove the scaling effects caused by differences in the free-stream Mach number. Note that over

a Mach number range of 0.01 to 0.2, the convergence rates for the preconditioned scheme are very

similar; the asymptotic convergence rates for the two lowest Mach numbers are almost identical.

Although not shown here, similar results have been obtained at an even lower Mach number of



0.001. On the other hand, the original non-preconditioned scheme failed to converge at Mach

numbers of 0.01 and lower; similar to the observations reported by Volpe [12].

The pressure distributions (at a span location of 80%) shown in Fig. 3 indicate that results for
Mach numbers of 0.01 and 0.1 are identical within plotting accuracy. Even at a Mach number of

0.2 (except for a slightly higher value of the pressure peak in the leading-edge region), the effect of

Mach number is negligible. These results demonstrate that the preconditioned system approaches

the incompressible limit in a smooth and systematic manner without any penalty in convergence
rate.

The effects of the conservative and non-conservative form of the artificial viscosity formulations

are shown in Figs. 4 and 5. The non-conservative formulation converges better on the coarser grid,

but is nearly identical in performance to the conservative formulation on the fine grid. The effect

of these two forms of artificial viscosity on pressure distribution is negligible, which is expected to

be the case at low speeds.

Flow over Two-Dimensional Multi-element Airfoil

The next test case considered here is that of a 3-element airfoil configuration that has been inves-

tigated both experimentally and theoretically [13]. Present computations are performed at a chord

Reynolds number of 9 million and an angle of attack of 16.2 °. The Mach number for this test case

is 0.2. A 20-block structured grid, shown in Fig. 6, is used for the computations. This test case

has also been investigated with the original non-preconditioned version of the flow solver used in

this work, as reported by Vatsa et al. [14].

The convergence histories for this case are presented in Fig. 7, where the results from the

original non-preconditioned and current preconditioned (conservative) schemes are compared. The

residuals in the original scheme indicate considerable slowdown in convergence at approximately 4-
orders: whereas the residuMs in the preconditioned scheme exhibit much better convergence. Note

that the free-stream Mach number of 0.2 for this case is not considered too low for compressible

codes. However, in this case several pockets of slow-moving flow exist in the cove regions of the

slat and the main airfoil sections [14]; these pockets slow the convergence of standard compressible

codes. The preconditioned system has a much better condition number for the eigenvalues and

does not experience slowdown as a result of such disparities in the flow speed.

The computed pressure distributions for this case are compared in Fig. 8. As expected, little
difference is observed in the two sets of computed results; furthermore, these results compare quite

favorably with the experimental data.

Transonic Flow over Three-Dimensional Wing

The final test case presented here involves transonic flow over the ONERA M6 wing. The test

conditions for this case are identical to the first test case except for the free-stream Mach number,

which is chosen as 0.84. The Navier-Stokes solutions for this case were obtained for conservative and

non-conservative preconditioners. A baseline solution with no preconditioning was also obtained

for comparison.

The computed pressure distributions for this case are compared in Fig. 9 at 80% span station.

This figure clearly shows that the pressure distributions from conservative preconditioning are vir-

tually indistinguishable from the baseline (unpreconditioned) case. However, the non-conservative



form of preconditioningproducesnoticeabledifferencesin the pressuredistributionin the vicinity
of the shocks.

Theconvergencehistoriesfor thiscaseareshownin Fig. 10,whereit isobservedthat thebase-
line scheme stalls once the residual drops approximately 4-orders in magnitude. The convergence

properties of the two preconditioned schemes are similar to one another and better than those of
the baseline scheme. Note that the slow convergence of the basic scheme cannot be attributed to

low free-stream velocities. However, the computational domain consists of low-speed flows in the

stagnation and boundary-layer regions, where the convective speed of propagation is much slower.

Preconditioning appears to reduce the imbalance of convective and acoustic speeds in these regions,

which improves the overall convergence rate for such problems.

Concluding Remarks

An attractive scheme for computing low-speed flows has been presented here in the framework of

a preconditioning applied to the compressible flow equations. The current formulation produces

accurate incompressible results in a smooth and systematic manner as the Mach number approaches

zero. Moreover, the proposed scheme is relatively easy to implement in an existing compressible

flow code.

The test cases presented here demonstrate the efficiency and accuracy of the preconditioned

scheme. Excellent convergence has been obtained at Mach numbers that range from 0.01 to 0.84.

The resulting pressure distributions agree well with known solutions for these cases. Based on our

experience thus far, this scheme offers a viable alternative to purely incompressible flow codes for

computing low-speed flows. In addition, this scheme offers the advantage of being able to compute

flows with mixed speed regimes, in which the local Mach numbers can vary from very low subsonic

to supersonic values, e.g., in the case of flow over high-lift configuration near maximum lift. Finally,

this scheme can improve the convergence rate even for viscous transonic flows by preconditioning the

embedded low-speed flows in the boundary layers. Future work should focus on matrix-dissipation

or Roe type schemes, to improve the numerical accuracy.

Appendix

We define the sets of variables

Qo = (p, u, v, w, s)

and

Qc = Q1 = (p, pu, pv, pw, E)

Q4 = (p,u,v,w,T).

Let a be the speed of sound, and q2 = u 2+ v 2 +w 2. Given the preconditioning Po in Qo

variables, we can compute the preconditioner P_ in Qi coordinates by

OQi OQo where P0 is given by Eq. (2).
_ OQoPO-5-C,
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Thefollowingtransformationmatricesconnectthesevariables:Let 02 = _2

(12

-___u

OQo P-..._y_v

001 p-....__w
P

(t 2 -- a 2

¢OQ1

OQo

(1-7)u (1-7)v (1-7)w
1 0 0
p

0 ! 0
P

0 0 0

(1-7)u (1-7)v (1-7)w

1 0 0 0 -1
a-r

U --U

p 0 0

0 p 0 -v
W --W

0 0 p
1 M _ -M 2

_ + T pu pv pw -3--

7-1
0

0
1

P

7-1

1 000 0

0 100 0

0 010 0

0 001 0

1-'7000

OQ4

OQo

1 000 0

0 100 0

0 010 0

0 001 0

(_-I)T 0 0 0 T

To transform the preconditioned residual in (p, u, v, w, T) to and from the conservative variables,

we use the following Jacobians, which result directly from those given above:

OQ4

OQ_

OQ1
OQ4

(12 7- 1
_u_ 0

p
_v_ 0

o
_w__ 0

p

p p

P 0 0 0-i
pu
--¢- p o o
pv
7- 0 P 0
pw
T 0 0 p
E
-_ pu pv pw

(l-_)u (l-_/v
1_ 0
p

0 1
P

o o

p P

-p
T

-pu
T

- p..._y.v
T

--pW

T

(1-7)w
0

0
1
p

p

oQ_I," _ o__%o__%,p OQo ri_Q, _. In particular, Pc = and P4 = For theAlso, Fi = OQo UOQc, so that Pi = OQ4 "* 140Q4"
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(p,u, v, w, T) variables, we consider only the case in which $ = 1. We define T = (_-I)T. Then,

F 4 ----

32 0 0 0 0
-_ 1_ 0 0 0--7-(l+a) p

0 0:f(1 + a) 0

=fi(l+ a) 0 0 _ 0

L zw-Lj

and letting/_ = _ + aq2:
p

F41 =

1 0 0 0 0

_'2 0 0 0
P

0 p 0 0

0 0 p 0
1 ^

-F_E pu pv pw
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Figure 6: Partial view of block-structured grid for 3-element high lift airfoil configuration
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